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Abstract. We analyze the phenomenon of stochastic resonance in an Ising-like system on a small-world
network. The system, which is subject to the combined action of noise and an external modulation, can
be interpreted as a stylized model of opinion formation by imitation under the effects of a “fashion wave”.
Both the amplitude threshold for the detection of the external modulation and the width of the stochastic-
resonance peak show considerable variation as the randomness of the underlying small-world network is
changed.

PACS. 87.23.Ge Dynamics of social systems – 89.65.-s Social systems – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion

1 Introduction

Many mathematical models of social processes, inspired
by analogies with physical systems, have recently been for-
mulated in order to describe a wide spectrum of phenom-
ena [1]. Economic and financial processes, disease spread-
ing and information propagation, and evolution of social
structures, among others, have been analyzed along such
lines. Weidlich [1] has proposed a model of public opinion
formation which, in the simplest variant, considers that
the individuals can adopt two different opinions. The opin-
ion of a given individual may be influenced by that of the
neighbors, making it to change with a certain probability.
In the present work, we analyze a similar model of social
influence and opinion formation. In contrast with previous
studies of this class of models, however, we are interested
at taking into account the network of social interactions.
Specifically, we model the underlying social structure of
the population as a small-world network. Small-world net-
works [2] incorporate two main features of real social inter-
actions. First, they are highly clustered, which means that
any two neighbors of a given site have a relatively large
probability of being in turn mutual neighbors. Second, the
mean number of intermediaries between any two sites is
quite small, and increases very slowly as the total number
of sites grows [3]. This is precisely the small-world prop-
erty, originally discussed by Milgram as a typical feature of
social communities and relationships [4]. Small-world net-
works can be considered as partially disordered structures.
The construction procedure makes it possible to control
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the degree of disorder of a given network, ranging from
ordered lattices to completely disordered graphs. Among
many other applications, these networks have been used as
a model of social structures in the study of disease [2,5–8]
and rumor propagation [9].

As pointed out in the next section, our model is an
Ising-like system whose dynamics is driven by the major-
ity rule. Equilibrium properties of Ising systems on small-
world networks have been studied in detail. It has been
shown that, in asymptotically large systems, even an in-
finitesimal amount of disorder on a one-dimensional Ising
lattice is sufficient for the system to undergo a ferromag-
netic phase transition as the temperature varies [3]. Here,
instead, we consider the case where the system is main-
tained out of equilibrium by an external modulation. In
the frame of the problem of opinion formation, this modu-
lation plays the role of a periodic “fashion” wave, as actu-
ally observed in certain real situations [10]. The combina-
tion of this modulation with noise – which, in equilibrium,
would play the role of the temperature – leads naturally
to the consideration of stochastic resonance [11]. In the
phenomenon of stochastic resonance, an enhancement of
the response of a system to an external modulation is ob-
tained by an adequate choice of the noise level. This effect
has attracted great interest due to both its potential tech-
nological applications and its connection with biological
detection mechanisms. The range of possible applications
in science includes paleoclimatology [12], electronic cir-
cuits [13,14], lasers [15,16], chemical [17] and biological
systems [18,19]. Stochastic resonance in Weidlich’s model
of opinion formation has already been studied [10]. In the
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present work, we analyze this phenomenon in a closely
related model of social imitation, incorporating a small-
world network as the underlying structure of social inter-
actions.

2 The model

As advanced in the Introduction, we consider an Ising-
like model on a network with a controlled degree of
disorder, namely, a small-world network. The network
is constructed as follows [2]. We start with an N -node
one-dimensional ordered lattice with periodic boundary
conditions, where each node is linked to its 2K nearest
neighbors (K clockwise andK counterclockwise). The net-
work is then disordered, rewiring each of the K clockwise
connections of each node i to a randomly chosen node j,
with probability p. Double and multiple connections are
forbidden, and realizations where the network becomes
disconnected are discarded. The final degree of disorder,
or randomness, is determined by the probability p. As a
result of the disordering process, some shortcuts between
otherwise distant regions are created. Note that, indepen-
dently of the value of p, the average number of links per
site is always 2K.

Each site of the small-world network is occupied by
an individual with two possible states, µi = ±1. At each
time step, an individual i is selected at random from the
whole population, and the following three evolution rules
are successively applied to its state µi. First, µi is changed
according to the majority rule, i.e.

µi → sign
∑
j{i}

µj , (1)

where the sum runs over the neighborhood of site i. If
the sum equals zero, µi is left unchanged. Second, we
apply the external modulation. The effect of this mod-
ulation is prescribed by a harmonic function of time,
f(t) = A cos(2πt/τ), with 0 < A < 1. Namely, the state
of individual i changes according to

µi → sign f(t), (2)

with probability Πr(t) = |f(t)|. Finally, noise is applied as
follows. With constant probability Πn the state µi is left
unchanged. With the complementary probability 1−Πn,
µi is assigned one of the two possible values ±1, chosen
at random with probability 1/2. We call η = 1 −Πn the
noise intensity. Note that, since an unambiguous definion
of the noise intensity in the stochastic-resonance problem
is crucial, it is essential that noise is applied after the
modulation. Inversion of these two steps would lead to an
effective noise intensity depending on time through the
function f(t).

In the absence of modulation, at low noise levels, and
for moderate and large randomness p, our population
evolves towards an almost homogeneous state, where µi
is the same at practically all sites. The average of µi
over the population, µ = N−1

∑n
i=1 µi, is close to ±1.

Due to the effect of noise, occasional transitions between
states with opposite signs are observed. For sufficiently
small p, on the other hand, µ fluctuates around zero
with relatively small amplitude. These two regimes cor-
respond, respectively, to the ferromagnetic and paramag-
netic phases predicted for equilibrium small-world Ising
systems [3]. In our simulations, we will mainly consider
randomness and noise levels for which the nonmodulated
system is in the ferromagnetic-like phase. All the cases
with p > 0 will in fact correspond to that phase. In this sit-
uation, the noiseless version of our system exhibits bista-
bility. The paramagnetic-like phase will only be encoun-
tered in the special case p = 0.

The effect of the external modulation on the
ferromagnetic-like phase consists of a periodic modifica-
tion in the transition probability between the two states
with µ ≈ ±1. In the paramagnetic-like phase, on the other
hand, µ oscillates around zero at the same frequency as
the modulation. In both cases, of course, the modulation is
combined with the random fluctuations of noise. It is this
nontrivial interplay, which may result in the enhancement
of the system response, that we focus on in our numerical
simulations.

3 Numerical results

We have performed extensive numerical simulations of
the model presented in the previous section, considering
small-world networks up to N = 105 nodes with K = 3.
The results presented in this section correspond to the
case N = 103, which is quantitatively representative of
larger systems and makes possible a statistically significa-
tive treatment. The time interval assigned to an evolution
step is ∆t = N−1 so that, on the average, the state of
each site is updated once during each time unit. Each re-
alization starts with the generation of the random network
and the random initialization of the state of all the ele-
ments. The evolution is analyzed after a transient of 105

time units, during which the system is found to reach a
steady large-time behavior. In particular, we record the
residence times tr, i.e. the intervals between two consecu-
tive changes of sign in the average state µ. Note that the
external modulation is expected to induce changes in the
sign of µ with a typical period close to τ/2. The values
of tr are used to construct a histogram, showing the fre-
quency of occurrence of each residence time. Throughout
all the calculations we considered τ = 400.

Figure 1 illustrates this histogram for fixed modula-
tion and small-world randomness, and three levels of noise.
For low noise, the histogram shows a peak at tr = τ/2,
as expected, but several odd harmonics, tr = kτ/2 with
k = 3, 5, 7, . . . , are also observed. These harmonics corre-
spond to residence intervals during which the modulation
fails, one or more times, at inducing the transition. At
intermediate noise levels, corresponding to the resonance
intensity, only the pick around tr = τ/2 is important.
For higher noise levels the transitions are disordered and
highly frequent, so that the residence times are usually
very short and the histogram displays a peak near tr = 0.
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Fig. 1. Normalized histograms of the residence time tr, for
p = 0.8 and τ = 400. Three different noise intensities η are
considered. Each histogram has been constructed recording the
residence times over an interval of 8 × 105 time units, with
a subsequent average over 20 realizations of the small-world
network and the initial condition. The insert in the third plot
shows the same data with logarithmic scale in the vertical axis.

The insert in the third plot shows this peak and the rem-
nant of the peak at tr = τ/2, which has slightly moved to
the left. We stress that the analysis of these patterns has
been employed as a quantitative description of stochastic
resonance in other systems [11,20], as an alternative to the
study of the signal-to-noise ratio [11]. In fact, a measure
of the sensitivity to the external modulation is given by
the area I under the peak around τ/2 in the (normalized)
histogram. Below, we refer to the area I as the response
of the system.

First, we analyze the behavior of our system as the
modulation amplitude A is varied. Fixing the intensity of
noise η we observe, for p > 0, the existence of a threshold
in A below which the system is not able to respond to the
modulation. We find that, as the randomness p increases,
the threshold amplitude grows as well. Figure 2 shows
the response I for a noise intensity η = 0.1 as a function
of A, for several values of p. The nature of this threshold
phenomenon is clarified in Figure 3, where we plot I in
logarithmic scale as a function of the inverse amplitude
for four values of p. The approximately linear dependence
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Fig. 2. Response I as a function of the modulation ampli-
tude A, for η = 0.1, and four values of the randomness p.
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Fig. 3. The response I, in logarithmic scale, as a function of
the inverse modulation amplitude, A−1, for four values of p.
Straight lines are least-square fittings to the line ar regime of
each data set.

for small I suggests the functional form

I(A) = I0 exp(−A0/A). (3)

This form is reminiscent of Kramers formula for the tran-
sition frequency ω between equilibrium states under the
action of thermal noise T , ω ∝ exp(−T0/T ), where T0

is related to the potential barrier separating the equilib-
ria [21]. In our case, for a fixed noise level, the role of
temperature – as the factor that induces the transition –
is played by the external modulation. Exploiting this anal-
ogy, our model can be thought of, at the macroscopic level,
as a system subject to an effective bistable potential, with
a barrier proportional to the slope A0. It is apparent from
Figure 3 that the slope depends on the small-world ran-
domness. As p grows from 0.1 to 0.9, the slope increases
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Fig. 4. The response I as a function of the noise intensity η,
for three values of the small-world randomness p. Lines joining
dots are drawn as a guide to the eye.
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Fig. 5. Area S under the stochastic-resonance curves (Fig. 4)
and lengths LM for several values of M (see main text), as a
function of the randomness p. Each data set is normalized with
respect to the case p = 1. Lines joining dots are drawn as a
guide to the eye.

by a factor of about 2.5, indicating that the minima in the
effective potential become deeper for larger randomness.

Taking into account the results shown in Figures 2
and 3, in our study of dependence of the response I on the
noise intensity η we fix A = 0.2 which, for the values of p
and η considered in our simulations, is always above the
detection threshold. In Figure 4, we show I as a function
of η for several values of p. The existence of a resonance
as the noise intensity is varied is apparent. At the same
time, an effect related to the variation of the randomness p
is observed. Namely, the higher is p, the broadest is the
resonant interval in η. In other words, accurate tuning of
the noise level in order to enhance the response is less
important in more disordered networks.

Figure 5 presents a quantitative characterization of the
broadening of the resonance curve as p grows. First, we
show the area S under the curve as a function of p. More-

over, we show the length LM of the intervals of noise inten-
sity where the response I is above the level IM = 0.01M ,
for several values of M .

4 Conclusion

We have presented an Ising-like model of opinion for-
mation by imitation on a small-world network, subject
to the action of an external modulation and noise. The
study is focused on the phenomenon of stochastic reso-
nance, which underlies the macroscopic behavior of this
system. The main control parameters in our analysis are
the amplitude A of the external modulation, the intensity
of noise η, and the small-world randomness p. The first
aspect studied here is the existence of a threshold in the
amplitude of the external signal, below which the system
is not able to detect the modulation. This threshold is
higher as the disorder of the network increases, and dis-
appears for p = 0. This fact suggests that the existence
of a threshold in A is directly related to the bistable na-
ture of the effective potential which acts on the system in
its ferromagnetic-like phase, i.e. for moderate and large
randomness. It is interesting to mention that the increase
of the threshold amplitude with the randomness, which
amounts to a growth in the effective potential barrier, has
a well-known correlate in social imitation processes sub-
ject to the action of noise [22]. The resistance to collective
changes of opinion grows drastically when long-range so-
cial interactions are allowed. A population restricted to
local interactions, instead, is susceptible to global opinion
transitions by diffusive-like propagation.

As expected, the analysis of the response of the sys-
tem as a function of the noise intensity η – provided that
the amplitude A is above the detection threshold – reveals
the occurrence of a resonance phenomenon. Though the
response of the system at the resonance is practically in-
dependent of the randomness p, an enhancement of the
phenomenon is apparent from the broadening of the reso-
nance curves as a function of η (Figs. 4 and 5). The con-
venience of broadening the stochastic-resonance curve to
avoid noise tuning has been discussed in connection with
a variety of systems [20,23,24].

The existence of stochastic resonance in a model of
opinion formation yields the appealing implication that
there is an optimal noise level for a population to respond
to an external “fashion” modulation [10]. Lower noise in-
tensities lead to the dominance of the majority’s opinion,
irrespectively of the external influences, while sufficiently
stronger fluctuations prevent the formation of a definite
collective opinion. We have here shown that, in this phe-
nomenon, the underlying structure of social interactions
plays a role, allowing for a looser tuning of the resonance
noise intensity as the disorder grows.

Let us finally mention that we have tested the robust-
ness of these results by studying a few variations of our
model. For instance, we have considered the case where
the external modulation acts only when it is not possible
to define an individual’s state by the majority rule, i.e.
when the sum in equation (1) equals zero. In this case, the
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individual adopts the state dictated by the “fashion” wave
with probability Πr(t), defined in Section 2, or preserves
the previous state with the complementary probability. In
all cases we got consistent results, qualitatively similar to
those presented here. Though our model is an oversim-
plified caricature of any real process, the results illustrate
the complex interplay between fluctuations, external influ-
ences, and interaction structure that is expected to take
place in actual societies.

The authors thank H.S. Wio for fruitful suggestions. MK
thanks Fundación Antorchas for financial support.
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